
Nonnegative Matrix Factorization: Models,

Algorithms and Applications

Zhong-Yuan Zhang1

School of Statistics, Central University of Finance and Economics, P.R.China,
zhyuanzh@gmail.com

Abstract. In recent years, Nonnegative Matrix Factorization (NMF)
has become a popular model in data mining society. NMF aims to extract
hidden patterns from a series of high-dimensional vectors automatically,
and has been applied for dimensional reduction, unsupervised learning
(clustering, semi-supervised clustering and co-clustering, etc.) and pre-
diction successfully. This chapter surveys NMF in terms of the model for-
mulation and its variations and extensions, algorithms and applications,
as well as its relations with K-means and Probabilistic Latent Seman-
tic Indexing (PLSI). In summary, we draw the following conclusions: 1)
NMF has a good interpretability due to its nonnegative constraints; 2)
NMF is very flexible regarding the choices of its objective functions and
the algorithms employed to solve it; 3) NMF has a variety of applications;
4) NMF has a solid theoretical foundation and a close relationship with
the existing state-of-the-art unsupervised learning models. However, as
a new and developing technology, there are still many interesting open
issues remained unsolved and waiting for research from theoretical and
algorithmic perspectives.

1 Introduction

Nonnegative Matrix Factorization (NMF,[1–3]) is evolved from Principal Com-
ponent Analysis (PCA, [4, 5]). PCA is one of the basic techniques for extracting
the principal components (basic factors) from a series of vectors such that each
vector is the linear combination of the components, in other words, PCA tries
to give the best low dimensional representation with a common basis for a set
of vectors. Formally, given a set of samples {xi, i = 1, 2, ⋅ ⋅ ⋅ ,m} in ℝ

n, PCA
aims to provide the best linear approximation of the samples in a lower dimen-
sional space, say ℝ

k. This problem can be represented as a nonlinear program-
ming problem: min

�,{�i},V

∑m
i=1 ∥xi − � − V �i∥22, where � is column vector of size

n × 1, V is matrix of size n × k and column orthogonal (V TV = I), and each
�i, i = 1, 2, ⋅ ⋅ ⋅ ,m is column vector of size k × 1. Fixing � and V , one can get

the optimal solution of �i = V T (xi − x̄), i = 1, 2, ⋅ ⋅ ⋅ ,m, where x̄ =
∑

i

xi/m;

similarly, fixing �i and V , one can get the optimal solution of � = x̄. Hence the

2

optimization problem can be re-written as:

min
V

m∑

i=1

∥(xi − x̄)− V V T (xi − x̄)∥22. (1)

The optimization problem can be solved by Singular Value Decomposition (SVD)
applied on the matrix X , each column of which is xi− x̄, such that X = ASBT ,
where A is an n×m matrix satisfying ATA = I, B is a m×m matrix satisfying
BTB = I and S is a m×m diagonal matrix with diagonal elements s11 ⩾ s22 ⩾

s33 ⋅ ⋅ ⋅ smm (they are singular values of X). The first k columns of A constitute
the matrix V in (1). The columns of V are called the principal components of
X ([5]).

Note that there are both positive and negative elements in each of the prin-
cipal components and also both positive and negative coefficients in linear com-
binations (i.e., �i, i = 1, 2 ⋅ ⋅ ⋅ ,m, has mixed signs). However the mixed signs
contradict our experience and make it hard to explain the results. For example,
the pixels in an image should be non-negative, hence the principal components
with negative elements extracted from the images cannot be intuitively inter-
preted ([6]). In fact, in many applications such as image processing, biology
or text mining, nonnegative data analysis is often important and nonnegative
constraints on the wanted principal components (basis matrix) and coefficients
(coding matrix) can improve the interpretability of the results. NMF is thus
proposed to address this problem. In particular, NMF aims to find the non-
negative basic representative factors which can be used for feature extraction,
dimensional reduction, eliminating redundant information and discovering the
hidden patterns behind a series of non-negative vectors.

Recent years, NMF has attracted considerable interests from research com-
munity. Various extensions are proposed to address the emerging challenges and
have been successfully applied to the field of unsupervised learning in data min-
ing including environmetrics ([3]), image processing ([1]) chemometrics ([7]),
pattern recognition ([8]), multimedia data analysis ([9]), text mining ([10–13])
and bioinformatics ([14–16]), etc., and received lots of attention. In [17] it has
been shown that when the least squares error is selected as the cost function,
NMF is equivalent to the soft K-means model, which establishes the theoretical
foundation of NMF used for data clustering. Besides the traditional least squares
error (Frobenius norm), there are other divergence functions that can be used as
the cost functions for NMF, such as K-L divergence and chi-square statistic ([2,
18]). In [18] it has been shown that constrained NMF using with K-L divergence
is equivalent to Probabilistic Latent Semantic Indexing, another unsupervised
learning model popularly used in text analysis ([19, 18]).

In this chapter, we give a systematic survey of Nonnegative Matrix Factor-
ization, including the basic model, and its variations and extensions, the appli-
cations of NMF in text mining, image processing, bioinformatics, finance etc.,
and the relations with K-means and PLSI. This chapter will not cover all of the
related works on NMF, but will try to address the most important ones that we
are interested in.

3

The chapter is organized as follows: Section 2 gives the standard NMF model
and several variations, Section 3 summarizes the divergence functions used in the
standard NMFmodel and the algorithms employed for solving the model, Section
4 reviews some selected applications of NMF, Section 5 gives the theoretical
analysis concerning the relations between NMF and the other two unsupervised
learning models including K-means and Probabilistic Latent Semantic Indexing
(PLSI), and Section 6 concludes.

2 Standard NMF and Variations

To easy explanation, Table 1 lists the notations used throughout the chapter.

Table 1. Notations used in this chapter.

ai Column vector indexed by i;
A Matrix;
Aij Element of the ith row and the jth column in matrix A;
A:,j The jth column of matrix A;
Ai,: The ith row of matrix A;

A ⩾ 0 A is element-wise nonnegative, i.e., Aij ⩾ 0 for all i and j;
A+ Matrix A that satisfies A ⩾ 0;
A± Matrix A that has mixed signs, i.e., there is no restriction on the elements’ signs of A;
A.

B
Matrix whose (i, j)− tℎ element is

Aij

Bij

;

A(t) The updated matrix A at the end of t−th iteration in the algorithm;

A
(t)
ij The (i, j) − tℎ element of matrix A(t).

2.1 Standard NMF

Nonnegative Matrix Factorization (NMF) is one of the models that focus on
the analysis of non-negative data matrices which are often originated from text
mining, images processing and biology. Mathematically, NMF can be described
as follows: given an n × m matrix X composed of non-negative elements, the
task is to factorize X into a non-negative matrix F of size n × r and another
non-negative matrix G of size m× r such that X ≈ FGT . r is preassigned and
should satisfy r ≪ m,n. It is usually formulated as an optimization:

min
F,G

J(X∥FGT) (2)

s.t. F ⩾ 0, G ⩾ 0,

where J(X∥FGT) is some divergence function that measures dissimilarity be-
tween X and FGT , and will be discussed in Sect. 3. Meanings of F and G can
be explained variously in different fields or for different purposes and will be
discussed in Sect. 4.

4

As we can see, all the elements of F and G are variables that need to be
decided, hence this is a large scale optimization problem and the standard al-
gorithms are not suitable, and one can observe that J(X∥FGT) is individually
convex in F and in G, hence in general, most of the algorithms designed for
NMF are iteratively and alternatively minimizing or decreasing F and G, which
is summarized in Algorithm 1. The details will be discussed in Sect. 3.

Algorithm 1 Nonnegative Matrix Factorization (General Case)

Input: F (0), G(0), t = 1.
Output: F,G.
1: while 1 do

2: Fix G(t−1) and find F (t) such that J(X∥F (t)G(t−1)T) ⩽ J(X∥F (t−1)G(t−1)T);
3: Fix F ((t)) and find G(t) such that J(X∥F (t)G(t)T) ⩽ J(X∥F (t)G(t−1)T);
4: Test for convergence;
5: if Some convergence condition is satisfied then

6: F = F (t);
7: G = G(t);
8: Break

9: end if

10: t = t+ 1;
11: end while

At last, we give an important property of NMF ([20, 21]) to close this subsec-
tion. As we have mentioned above, the factors in Singular Value Decomposition
(SVD): X = ASBT = A′B′T , where A′ = AS1/2 and B′ = BS1/2, typically
contain mixed sign elements. And NMF differs from SVD due to the absence of
cancellation of plus and minus signs. But what is the fundamental signature of
this absence of cancellation? It is the Boundedness Property.

Theorem 1. (Boundedness Property, [20, 21]) Let 0 ⩽ X ⩽ M1, where M
is some positive constant, be the input data matrix. F,G are the nonnegative
matrices satisfying

X = FGT . (3)

There exists a diagonal matrix D ≥ 0 such that

X = FGT = (FD)(GD−1)T = F ∗G∗T (4)

with

0 ⩽ F ∗
ij ⩽

√
M, 0 ⩽ G∗

ij ⩽
√
M. (5)

If X is symmetric and F = GT , then G∗ = G.

Proof. See Appendix.

1 0 ⩽ X ⩽ M means 0 ≤ Xij ⩽ M , i = 1, 2, ⋅ ⋅ ⋅ , n, j = 1, 2, ⋅ ⋅ ⋅ ,m.

5

We note that SVD decomposition does not have the boundedness property.
In this case, even if the input data are in the range of 0 ≤ Xij ≤ M , we can find

some elements of A′ and B′ that are larger than
√
M .

In NMF, there is a scale flexibility, i.e., for any positive D, if (F,G) is a
solution, so is (FD,GD−1). This theorem assures the existence of an appropriate
scale such that both F and G are bounded, i.e., their elements can not exceed
the magnitude of the input data matrix. This ensures that F,G are in the same
scale.

Consequently, we will briefly review the variations that are rooted from NMF
and proposed from different perspectives. Note that only the motivations for
the research and the model formulations are reviewed, their algorithms and the
application results are omitted here due to space limitation. One can find more
details in the corresponding references.

2.2 Semi-NMF ([22])

Semi-NMF is designed for the data matrixX that has mixed signs. In semi-NMF,
G is restricted to be nonnegative while the other factor matrix F can have mixed
signs, i.e., semi-NMF can take the following form2: X± ≈ F±GT

+. This model is
motivated from the perspective of data clustering. When clustering the columns
of data matrix X , the columns of F can be seen as the cluster centroids and
the rows of G denote the cluster indicators, i.e., the column j of X belongs to
cluster k if k = argmaxp{Gjp}. Hence the nonnegative constraint on F can be
relaxed such that the approximation FGT is tighter and the results are more
interpretable. Naturally, semi-NMF can also take the form: X± ≈ F+G

T
± if we

want to cluster the rows of matrix X .

2.3 Convex-NMF ([22])

Convex-NMF is also presented for reasons of interpretability. Since the factor F
denotes the cluster centroids, the columns of F should lie within the column space
of X , i.e., F:,j , j = 1, 2, ⋅ ⋅ ⋅ , r, can be represented as the convex combination of
the columns of X : F:,j =

∑m
i=1 WijX:,i or F = XW with constraints W ⩾ 0 and

∑m
i=1 Wij = 1, j = 1, 2, ⋅ ⋅ ⋅ , r. Hence the model can take the following form:

X± ≈ X±W+G
T
+. An interesting conclusion is that the convex-NMF factors F

and G are naturally sparse.

2.4 Tri-NMF ([23])

Tri-NMF is presented to address the co-clustering problem (See Sect. 4.4), i.e., it
presents a framework for clustering the rows and columns of the objective matrix
X simultaneously. This model aims to find three factors F , S and G such that
X+ ≈ F+S+G

T
+ with constraints FTF = I and GTG = I. F and G are the

2 The subscripts ± and + are used frequently to indicate the application scopes of the
models.

6

membership indicator matrices of the rows and the columns of X respectively,
and S is an additional degree of freedom which makes the approximation tighter.

2.5 Kernel NMF ([24])

For the element-wise mapping �: X± 7→ �(X±) : �(X)ij = �(Xij), kernel
NMF is designed as: �(X±) ≈ �(X±)W+G

T
+, from which one can see that

the kernel NMF is just an extension of the convex-NMF. Kernel-NMF is well-
defined since ∥�(X)−�(X)WGT ∥2 = trace(�T (X)�(X)− 2�T (X)�(X)WGT +
GWT�T (X)�(X)WGT) only depends on the kernelK = �T (X)�(X). Note that
the standard NMF or Semi-NMF does not have the kernel extension on �(X)
since, in that case, F and G will depend explicitly on the mapping �(⋅) which is
unknown.

2.6 Local Nonnegative Matrix Factorization, LNMF ([25, 26])

As we have mentioned above, NMF is presented as a “part of whole” factorization
model and tries to mine localized part-based representation that can help to
reveal low dimensional and more intuitive structures of observations. But it
has been shown that NMF may give holistic representation instead of part-
based representation ([25, 27]). Hence many efforts have been done to improve
the sparseness of NMF in order to identify more localized features that are
building parts for the whole representation. Here we introduce several sparse
variants of NMF, including LNMF, NNSC, SNMF, NMFSC, nsNMF, SNMF/R
and SNMF/L, as the representative results on this aspect.

LNMF was presented by [25]. In simple terms, it imposes the sparseness
constraints on G and locally constraints on F based on the following three con-
siderations:

– Maximizing the sparseness in G;
– Maximizing the expressiveness of F ;
– Maximizing the column orthogonality of F .

The objective function in the model of LNMF can take the following form:
∑

i,j(Xij log
Xij

(FGT)ij
−Xij + (FGT)ij) + �

∑

i,j

(FTF)ij − �
∑

i

(GTG)ii.

2.7 Nonnegative Sparse Coding, NNSC ([28])

NNSC only maximizes the sparseness in G. The objective function to be mini-
mized can be written as: ∥X − FGT ∥2F + �

∑

i,j Gij .

2.8 Spares Nonnegative Matrix Factorization, SNMF ([29–31])

The objective function in the above model of NNSC can be separated into a
least squares error term ∥X −FGT ∥2F and an additional penalty term

∑

i,j Gij .

7

Ref [29] replaced the least squares error term with the KL divergence to get

the following new objective function:
∑

i,j [Xij log
Xij

(FGT)ij
−Xij + (FGT)ij] +

�
∑

i,j

Gij . Similarly, ref. [30] revised the penalty term to get another objective

function:
∥X − FGT ∥2F + �

∑

i,j

G2
ij . (6)

Furthermore, ref. [31] added an additional constraint on F , similar to that on
G, into the objective function (6) to give the following CNMF model:

min
F⩾0,G⩾0

∥X − FGT ∥2F + �
∑

i,j

F 2
ij + �

∑

i,j

G2
ij .

2.9 Nonnegative Matrix Factorization with Sparseness Constraints,
NMFSC ([32])

NMFSC employs the following measure to control the sparseness of F and G
directly:

Sp(a) =

√
n−∑ ∣aj ∣/

√
∑

a2j√
n− 1

.

In other words, the model can be written as:

min ∥X − FGT ∥2F
s.t. Sp(F:,j) = SF ,

Sp(G:,j) = SG, j = 1, 2, ⋅ ⋅ ⋅ , r,

where SF and SG are constants in [0,1], and it is easy to verify that the larger
SF and SG, the more sparse F and G are.

2.10 Nonsmooth Nonnegative Matrix Factorization, nsNMF ([15])

nsNMF is also motivated by sparseness requirement of many applications and

can be formulated as: X = FSGT , where S = (1− �)I +
�

k
IIT is a “smoothing”

matrix, I is identity matrix and the parameter � ∈ [0, 1] can indirectly control
the sparseness of both the basis matrix F and the coding matrix G. One can
observe that the larger the parameter �, the more smooth (non-sparse) FS and
GS are, in other words, each column of FS tends to be the constant vector with
values equal to the average of the corresponding column of F as � → 1. This
is also the case for GS. But when updating G while fixing FS, the smoothness
in FS will naturally enforce the sparseness in G and when updating F while
fixing GS, the smoothness in GS will also enforce the sparseness in F. Hence F
and G are enforced to be sparse iteratively. Note that � = 0 corresponds to the
standard NMF.

8

2.11 Sparse NMFs: SNMF/R, SNMF/L ([33])

Sparse NMFs includes two formulations: SNMF/R for sparse G and SNMF/L
for sparse F . SNMF/R is formulated as: min

F⩾0,G⩾0
∥X − FGT ∥2F + �

∑

i,j F
2
ij +

�
∑

i(
∑

j Gij)
2 and SNMF/L is formulated as: min

F⩾0,G⩾0
∥X−FGT∥2F+�

∑

i,j G
2
ij+

�
∑

i(
∑

j Fij)
2.

We note that there is still lack of systematic comparisons of the concordances
and differences among the above seven sparse variants of NMF, which is an
interesting topic.

2.12 CUR Decomposition ([34])

Instead of imposing the sparseness constraints on F and G, CUR decomposi-
tion constructs F from selected columns of X and G from selected rows of X
respectively. In other words, the columns of F are composed of a small number
of the columns in X and the columns of G are composed of a small number of
the rows in X . The model can be formulated as follows: X ≈ FSGT 3, where S
is introduced to make the approximation tighter, as its counterpart has done in
Tri-NMF.

2.13 Binary Matrix Factorization, BMF ([20, 21])

Binary Matrix Factorization (BMF) wants to factorize a binary matrix X (that
is, elements of X are either 1 or 0) into two binary matrices F and G (thus
conserving the most important integer property of the objective matrix X) sat-
isfying X ≈ FGT . It has been shown that the bi-clustering problem (See Sect.
4.4) can be formulated as a BMF model ([21]). Unlike the greedy strategy-based
models/algorithms, BMF are more likely to find the global optima. Experimen-
tal results on synthetic and real datasets demonstrate the advantages of BMF
over existing bi-clustering methods. BMF will be further discussed in Sect. 4.

Table 2 summarizes the variations and extensions of NMF mentioned above.

3 Divergence Functions and Algorithms for NMF

In this part, we will review the divergence functions used for NMF and the al-
gorithms employed for solving the model. We will consider several important
divergence functions and the algorithmic extensions of NMF developed to ac-
commodate these functions.

3 In the original research, this model was presented as: A ≈ CUR, which is the origin
of the name CUR, and A may have mixed signs.

9
Table 2. Summary of different models based on NMF. Each row lists a variant and its associated constraints. ± means that the matrix
in the corresponding column may have mixed signs, + means that the matrix is nonnegative, 0−1 means that the elements in the matrix
can only be zero or one and I denotes identity matrix.

Models Cost Function X F S G

NMF1 [1, 2] Least Squares Error + + I +

NMF2 [1, 2] K-L Divergence + + I +

Semi-NMF [22] Least Squares Error ± ± I +

Convex-NMF [22] Least Squares Error ± ±, F:,j is the convex combination of {X:,j ; j = 1, ⋅ ⋅ ⋅ , n} I +

Tri-NMF [23] Least Squares Error + +, FTF = I + +, GTG = I

Symmetric-NMF [24] Least Squares Error +, symmetric +, F = G + +

K-means [17] Least Squares Error +, symmetric +, F = G I +, GTG = I

PLSIa [18, 19] K-L Divergence
∑

i,j
Xij = 1

∑

i
Fik = 1, i = 1, ⋅ ⋅ ⋅m Diagonal,

∑

k
Skk = 1

∑

j
Gjk = 1, j = 1, ⋅ ⋅ ⋅n

LNMF [25, 26] K-L Divergence with penalty termsb + + I +

NNSC [28] Least Squares Error with penalty termsc + + I +

SNMF1 [29] K-L Divergence with penalty termsd + + I +

SNMF2 [30] Least Squares Error with penalty termse + + I +

SNMF3 [31] Least Squares Error with penalty termsf + + I +

NMFSC [32] Least Squares Error + +, Sp(F:,j) = SF
g, j = 1, ⋅ ⋅ ⋅ , k I +, Sp(G:,j) = SG

h, j = 1, ⋅ ⋅ ⋅ , k
NMF/L [33] Least Squares Error with penalty termsi + + I +

NMF/R [33] Least Squares Error with penalty termsj + + I +

nsNMF [15] K-L Divergence + + S = (1 − �)I + �
k
IIT +

CUR [34] Least Squares Error + +k + +l

BMF [20, 21] Least Squares Error 0 − 1 0 − 1 I 0 − 1

a The relations between NMF and K-means, between NMF and PLSI will be reviewed in Sect. 5.
b ∑

i,j
(Xij log

Xij

(FGT)ij
− Xij + (FGT)ij) + �

∑

i,j
(FTF)ij − �

∑

i
(GTG)ii.

c ∥X − FGT ∥2
F + �

∑

i,j Gij .

d ∑

i,j [Xij log
Xij

(FGT)ij
− Xij + (FG

T
)ij] + �

∑

i,j

Gij .

e ∥X − FGT ∥2
F + �

∑

i,j
G2

ij .
f ∥X − FGT ∥2

F + �
∑

i,j
F 2

ij + �
∑

i,j
G2

ij .
g
Sp(a) = (

√
n − ∑ ∣aj ∣/

√

∑

a2
j
)/

√
n − 1, SF is a constant.

h
SG is a constant.

i ∥X − FGT ∥2
F + �∥G∥2

F + �
∑

i
∥Fi,:∥2

1.
j ∥X − FGT ∥2

F + �∥F∥2
F + �

∑

i ∥Gi,:∥2
1.

k Columns of F are composed of a small number of columns in X.
l Columns of G are composed of a small number of rows in X.

10

3.1 Divergence Functions

One of the main advantages of NMF is its flexibility in the selection of the
objective divergence functions. Here we will review several important divergence
functions and the relations among them. These functions play important roles
in solving NMF model, and may lead to different numerical performance. Hence
research on the relations between the divergence functions and the appropriate
applications is of great interest. Detailed theoretical analysis addressing this
problem is in pressing need though some related numerical results have been
given.

Csiszár’s ' Divergence ([35]) The Csiszár’s ' divergence is defined as:

D'(X ∣∣FGT) =
∑

i,j

(FGT)ij'(
Xij

(FGT)ij
), where Xij ⩾ 0, (FGT)ij ⩾ 0 and

' : [0,∞) → (−∞,∞) is some convex function and continuous at point zero.
Based on the flexibility of ', the divergence has many instances. For example:

– ' = (
√
x− 1)2 corresponds to Hellinger divergence;

– ' = (x− 1)2 corresponds to Pearson’s �2 divergence;
– ' = x(x�−1−1)/(�2−�)+(1−x)/� corresponds to Amari’s �−divergence,

which will be introduced later.

Note that though the selection of ' is flexible, Csiszár’s ' divergence does
not include the traditional least squares error: DLSE(X∥FGT) =

∑

i,j(Xij −
(FGT)ij)

2.

�−Divergence, ([36–39]) The �−divergence is defined as: D�(X ∣∣FGT) =
1

�(1 − �)

∑

i,j

(�Xij + (1 − �)(FGT)ij − X�
ij(FGT)1−�

ij), where � ∈ (−∞,∞).

Different selection of � may corresponds to different specific divergence. For
example:

– lim
�→0

D�(X ∣∣FGT) corresponds to K-L divergence DKL(FGT ∣∣X);

– � =
1

2
corresponds to Hellinger divergence;

– lim
�→1

D�(X ∣∣FGT) corresponds to K-L divergence DKL(X ∣∣FGT);

– � = 2 corresponds to Pearson’s �2 divergence.

Since �−divergence is a special case of Csiszár’s ' divergence, as we have men-
tioned above, it does not include the least squares error either.

Bregman Divergence ([40]) The Bregman divergence can be defined as:
DBreg(X∥FGT) =

∑

i,j '(Xij) − '((FGT)ij) − '′((FGT)ij)(Xij − (FGT)ij),

where ' : S ⊆ ℝ → ℝ is some strictly convex function that has continuous
first derivative, and (FGT)ij ∈ int(S) (the interior of set S). Some instances of
Bregman divergence are listed as follows:

11

– ' =
x2

2
corresponds to least squares error;

– ' = x log x corresponds to K-L divergence;
– ' = − log x corresponds to Itakura-Saito (IS) divergence.

�−Divergence ([41, 39]) The �−divergence is defined as: D�(X ∣∣FGT) =
∑

i,j

(Xij

X�
ij − (FGT)�ij

�
−

X�+1
ij − (FGT)�+1

ij

� + 1
) where � ∕= 0,−1. This divergence

is also a big family including K-L divergence, least squares error, etc. Specifically:

– lim
�→0

D�(X ∣∣FGT) corresponds to K-L divergence DKL(X ∣∣FGT);

– � = 1 corresponds to least squares error DLSE(X ∣∣FGT);
– lim

�→−1
D�(X ∣∣FGT) corresponds to Itakura-Saito (IS) divergence which will

be introduced later.

Note that �−divergence D�(x∥y) can be got from �−divergence D�(x∥y) by

nonlinear transformation: x = x�+1, y = y�+1 and supposing � =
1

� + 1
([42]).

Itakura-Saito (IS) Divergence ([43]) The Itakura-Saito divergence is de-

fined as: DIS(X∥FGT) =
∑

i,j

(
Xij

(FGT)ij
− log

Xij

(FGT)ij
− 1). Note that IS diver-

gence is a special case of both the Bregman divergence (�(x) = − log x) and the
�-divergence (� = −1).

K-L Divergence ([2]) The K-L divergence is defined as: DKL(X∥FGT) =
∑

i,j

[Xij log
Xij

(FGT)ij
−Xij+(FGT)ij]. As we have discussed above, the K-L diver-

gence is a special case of �−divergence, Bregman divergence and �−divergence.

Least Squares Error ([2]) The least squares error is defined as:DLSE(X∥FGT) =
∥X − FGT ∥2F =

∑

i,j

(Xij − (FGT)ij)
2, which is a special case of Bregman diver-

gence and �−divergence.
We summarize the different divergence functions and the corresponding mul-

tiplicative update rules (See Sect. 3.2) in Table 3. The other algorithms such
as Newton algorithm or Quasi-Newton algorithm that are specially designed for
some of the divergence functions will be reviewed in the next subsection.

3.2 Algorithms for NMF

The algorithm design for solving NMF is an important direction and several
algorithms, according to different objective divergence functions and different

1
2

Table 3. Summary of the different divergence functions and the corresponding multiplicative update rules. Note that “Convergence”
only says whether the update rules have been proven to be monotonically decreasing. Even if this is proven, the algorithm does not
necessarily converge to a local minimum ([44]).

Divergence Function Multiplicative Update Rules of F and G Convergence Comments

Csiszár’s ' Divergence —— —— ——

�−Divergence

Fik := Fik(
((X.

FGT)�G)ik∑
l

Glk

)
1
�

Gik := Gik(
((XT .

GFT)�F)ik∑
l

Flk

)
1
�

proved
special case of '−divergence
('(x) = x(x�−1 − 1)/(�2 − �) + (1− x)/�)

Bregman Divergence

Fik := Fik

∑

j ∇
2�(FGT)ijXijGjk

∑

j ∇2�(FGT)ij(FGT)ijGjk

Gik := Gik

∑

j ∇
2�(GFT)ijXjiFjk

∑

j ∇2�(GFT)ij(GFT)ijFjk

proved ——

�−Divergence

Fik := Fik

∑

j((FGT)
�−1
ij

Xij)Gjk
∑

j(FGT)
�
ij

Gjk

Gik := Gik

∑

j((FGT)
�−1
ji

Xji)Fjk
∑

j(FGT)
�
ji

Fjk

proved when 0 ⩽ � ⩽ 1 ([43]) ——

Itakura-Saito (IS) Divergence

Fik := Fik

∑

j

Xij

(FGT)2
ij

Gjk

∑

j

Gjk

(FGT)ij

Gik := Gik

∑

j

Xji

(FGT)2
ji

Fjk

∑

j

Fjk

(FGT)ji

not proved
special case of Bregman divergence
('(x) = − log x) and �−divergence
(� = −1)

K-L Divergence

Fik := Fik
∑

j Gjk

∑
j

Xij

(FGT)ij
Gjk

Gik := Gik
∑

j Fjk

∑
j

Xji

(FGT)ji
Fjk

proved

special case of �−divergence (� = 1),
Bregman divergence ('(x) = x log x)
and �−divergence
(� = 0)

Least Squares Error

Fik := Fik

(XG)ik
(FGTG)ik

Gik := Gik

(XTF)ik
(GF TF)ik

proved

special case of Bregman divergence

('(x) =
x2

2
) and �−divergence

(� = 1)

13

application purposes, have been proposed. In this part, we will briefly review
the representative ones. Note that to simplify the complexity of the problem,
we only consider the standard NMF model, i.e., only the optimization problem
(2) is considered. The algorithms for its variations presented in Sect. 2 can be
obtained by simple derivations and can be found in the corresponding literature.

Multiplicative Update Algorithm ([1, 2]) The multiplicative update rules
of NMF with its convergence proof (indeed, only the monotonic decreasing prop-
erty is proved) was firstly presented by Lee & Seung ([1, 2]). Because of the sim-
plicity and effectiveness, it has become one of the most influential algorithms
that are widely used in the data mining community. This algorithm is gradient-
descent-based and similar to the Expectation Maximization Algorithm (EM).
Specifically when the K-L divergence is selected as the objective function, the
multiplicative update algorithms can be summarized as Algorithm 2. In addi-
tion, there are several interesting properties of the relations between the multi-
plicative update rules with K-L divergence and the EM algorithm employed in
Probabilistic Latent Semantic Indexing (PLSI), which will be discussed in Sect.
5.

The update rules in line 2 and line 3 of Algorithm 2 vary with the user-
selected objective functions and have been summarized in Table 3.

Algorithm 2 Nonnegative Matrix Factorization (K-L divergence, Multiplicative
Update Rules)

Input: F (0), G(0), t = 1.
Output: F,G.
1: while 1 do

2: Update F
(t)
ik :=

F
(t−1)
ik∑

j
G

(t−1)
jk

∑

j

Xij

(F (t−1)G(t−1)T)ij
G

(t−1)
jk ;

3: Update G
(t)
jk :=

G
(t−1)
jk∑
i
F

(t)
ik

∑

i

Xij

(F (t)G(t−1)T)ij
F

(t)
ik ;

4: Test for convergence;
5: if Some convergence condition is satisfied then

6: F = F (t);
7: G = G(t);
8: Break

9: end if

10: t = t+ 1;
11: end while

Project Gradient Algorithm ([45]) The project gradient descent method
is generally designed for bound-constrained optimization problems. In order to

14

use this method, a sufficiently large upper bound U is firstly set for F and G
(since the upper bound U is sufficiently large, the solutions of the revised model
will be identical with the original one). The objective optimization function is
selected as the least squares error. The K-L divergence is not suitable because
this divergence is not well-defined on the boundary of the constraints (the log
function is defined for positive reals). The method can then be summarized in

Algorithm 3. Note that (P [∙])ij =

⎧

⎨

⎩

∙ij , 0 ⩽ ∙ij ⩽ U,
0. ∙ij < 0,
U, ∙ij > U.

Newton Algorithm ([46]) The Newton algorithm is designed for the least
squares error (Indeed, the idea of quasi-Newton method is employed). Basically,
it can be summarized in Algorithm 4. Note that D is an appropriate positive

definite gradient scaling matrix, and [Z+(X)]ij =

{
Xij , (i, j) /∈ I+,
0. otherwise

and I+

will be given in the algorithm. The details are omitted due to space limitation.

The Newton algorithm and the Quasi-Newton algorithm presented below
have utilized the second order information of the model (Hessian matrix), hence
one can expect that they have better numerical performance than the multi-
plicative update rules and the projected gradient descent though they should be
more time-consuming.

Quasi-Newton Method ([47]) The Quasi-Newton algorithm is designed for
the �−divergence. As we have discussed above, this divergence is a general case of
several useful objective optimization functions including the K-L divergence. But
note that the least squares error is not included. The proposed Quasi-Newton

algorithm is summarized in Algorithm 5. Note that H
(F)
J and H

(G)
J are the

Hessian matrices of F and G, and ∇F J and ∇GJ are the gradients of F and G.

Active Set Algorithm ([48]) The active set algorithm is designed for the
least squares error. The basic idea is to decompose the original optimization
problem min

F⩾0,G⩾0
∥X − FGT ∥2F into several separate subproblems, then solve

them independently using the standard active set method and finally merge
the solutions obtained. In other words, firstly, fixing F , decompose the problem
min

F⩾0,G⩾0
∥X − FGT ∥2F into the following series of subproblems: min

Gi,:⩾0
∥X:,i −

FGT
i,:∥2F , i = 1, 2, ⋅ ⋅ ⋅ ,m, then solve them independently and finally update G.

Then fixing G, update F similarly.

Hereto, we have reviewed several newly developed algorithms, most of which
are nonlinear-programming-originated but are specially designed for NMFmodel.
Note that the technical details are omitted here due to space limitation. One can
get more information from the corresponding references.

15

Algorithm 3 Nonnegative Matrix Factorization (Least Squares Error, Projected
Gradient Method)

Input: F (0), G(0), t = 1.
Output: F,G.
1: while 1 do

2: F (old) = F (t−1);
3: while 1 do

4: Compute the gradient matrix ∇FJ(X, F (old)G(t−1)T);
5: Compute the step length �;
6: Update F (old):

F (new) = P [F (old) − �∇FJ(X, F (old)G(t−1)T)];

7: F (old) = F (new);
8: Test for convergence;
9: if Some convergence condition is satisfied then

10: F (t) = F (old);
11: Break

12: end if

13: end while

14: G(old) = G(t−1);
15: while 1 do

16: Compute the gradient matrix ∇GJ(X,F (t)G(old)T);
17: Compute the step length �;
18: Update G(old):

G(new) = P [G(old) − �∇GJ(X, F (t)G(old)T)];

19: G(old) = G(new);
20: Test for convergence;
21: if Some convergence condition is satisfied then

22: G(t) = G(old);
23: Break

24: end if

25: end while

26: if Some stopping criteria are met then
27: F = F (t); G = G(t);
28: Break

29: end if

30: t = t+ 1;
31: end while

16

Algorithm 4 Nonnegative Matrix Factorization (Least Squares Error, Newton
Algorithm)

Input: F (0), G(0), D, t = 1.
Output: F,G.
1: while 1 do

2: F (old) = F (t−1);
3: while 1 do

4: Compute the gradient matrix ∇FJ(X, F (old)G(t−1)T);

5: Compute fixed set I+ := {(i, j) : F
(old)
ij = 0, [∇FJ(X, F (old)G(t−1)T)]ij > 0}

for F (old);
6: Compute the step length vector �;
7: Update F (old):

U = Z+[∇FJ(X,F (old)G(t−1)T)]; U = Z+(DU);

F (new) = max(F (old) − Udiag(�), 0);

8: F (old) = F (new);
9: Update D if necessary;
10: Test for convergence;
11: if Some convergence condition is satisfied then

12: F (t) = F (old);
13: Break

14: end if

15: end while

16: G(old) = G(t−1);
17: while 1 do

18: Compute the gradient matrix ∇GJ(X,F (t)G(old)T);

19: Compute fixed set I+ := {(i, j) : G
(old)
ij = 0, [∇GJ(X,F (t)G(old)T)]ij > 0} for

G(old);
20: Compute the step length vector �;
21: Update G(old):

U = Z+[∇GJ(X, F (t)G(old)T)]; U = Z+(DU);

G(new) = max(G(old) − Udiag(�), 0);

22: G(old) = G(new);
23: Update D if necessary;
24: Test for convergence;
25: if Some convergence condition is satisfied then

26: G(t) = G(old);
27: Break

28: end if

29: end while

30: if Some stopping criteria are met then
31: F = F (t); G = G(t);
32: Break

33: end if

34: t = t+ 1;
35: end while

17

Algorithm 5 Nonnegative Matrix Factorization (�−Divergence, Quasi-Newton
Algorithm)

Input: F (0), G(0), t = 1.
Output: F,G.
1: while 1 do

2: Update F (t) := max(F (t−1) − [H
(F)
J]−1∇FJ, 0);

3: Update G(t) := max(G(t−1) − [H
(G)
J]−1∇GJ, 0);

4: Test for convergence;
5: if Some convergence condition is satisfied then

6: F = F (t);
7: G = G(t);
8: Break

9: end if

10: t = t+ 1;
11: end while

4 Applications of NMF

Nonnegative Matrix Factorization has been proved to be valuable in many fields
of data mining, especially in unsupervised learning. In this part, we will briefly
review its applications in image processing, data clustering, semi-supervised clus-
tering, bi-clustering (co-clustering) and financial data mining. Note that we can-
not cover all the interesting applications of NMF, but generally speaking, the
special point on NMF is its ability to recover the hidden patterns or trends
behind the observed data automatically, which makes it suitable for image pro-
cessing, feature extraction, dimensional reduction and unsupervised learning.
The preliminary theoretical analysis concerning this ability will be reviewed in
the next section, in other words, the relations between NMF and some other
unsupervised learning models will be discussed.

4.1 Image Processing

Though the history of Nonnegative Matrix Factorization was traced back to
1970’s, NMF was attracted lots of attention due to the research of Lee & Seung
([1, 2]). In their works, the model was applied to image processing successfully.
Hence we review the applications of NMF on this aspect firstly.

In image processing, the data can be represented as n×m nonnegative matrix
X , each column of which is an image described by n nonnegative pixel values.
Then NMF model can find two factor matrices F and G such that X ≈ FGT .
F is the so-called basis matrix since each column can be regarded as a part of
the whole such as nose, ear or eye, etc. for facial image data. G is the coding
matrix and each row is the weights by which the corresponding image can be
reconstructed as the linear combination of the columns of F .

In summary, NMF can discover the common basis hidden behind the obser-
vations and the way how the images are reconstructed by the basis. Indeed, the

18

psychological and physiological researches have shown evidence for part-based
representation in the brain, which is also the foundation of some computational
theories ([1]). But further researches have also shown that the standard NMF
model does not necessarily give the correct part-of-whole representations ([25,
27]), hence many efforts have been done to improve the sparseness of NMF in
order to identify more localized features that are building parts for the whole
representation (See Sect. 2).

4.2 Clustering

One of the most interesting and successful applications of NMF is to cluster data
such as text, image or biology data, i.e. discovering patterns automatically from
data. Given a nonnegative n ×m matrix X , each column of which is a sample
and described by n features, NMF can be applied to find two factor matrices F
and G such that X ≈ FGT , where F is n× r and G is m× r, and r is the cluster
number. Columns of F can be regarded as the cluster centroids while G is the
cluster membership indicator matrix. In other words, the sample i is of cluster
k if Gik is the largest value of the row Gi,:.

The good performance of NMF in clustering has been validated in several
different fields including bioinformatics (tumor sample clustering based on mi-
croarray data, [14]), community structure detection of the complex network ([49])
and text clustering ([10–12]).

4.3 Semi-supervised Clustering

In many cases, some background information concerning the pairwise relations of
some samples are known and we can add them into the clustering model in order
to guide the clustering process. The resulting constrained problem is called semi-
supervised clustering. Specifically, the following two types of pairwise relations
are often considered:

– Must-link specifies that two samples should have the same cluster label;
– Cannot-link specifies that two samples should not have the same cluster

label.

Then, one can establish two nonnegative matricesWreward = {wij : sample i and
sample j are in the same class} andWpenalty = {wij : sample i and sample j are not

in the same class} based on the above information, and the similarity matrix
W = XTX of the samples (columns of X are samples) can then be replaced by
W − Wreward + Wpenalty (note that it is still a symmetric matrix). Finally,

NMF is applied:

min
S⩾0,G⩾0

∥(W −Wreward +Wpenalty)−GSGT ∥2F ,

where G is the cluster membership indicator, i.e., sample i is of cluster k if the
element Gik is the largest value of the rowGi,:. Theoretical analysis and practical
applications have been contributed by [50]. We summarize the main theoretical
results but omit the details here.

19

Theorem 2. Orthogonal Semi-Supervised NMF clustering is equivalent to Semi-
Supervised Kernel K-means ([51]).

Theorem 3. Orthogonal Semi-Supervised NMF clustering is equivalent to Semi-
Supervised Spectral clustering with Normalized Cuts ([52]).

4.4 Bi-clustering (co-clustering)

Bi-clustering was recently introduced by Cheng & Church ([53]) for gene expres-
sion data analysis. In practice, many genes are only active in some conditions
or classes and remain silent under other cases. Such gene-class structures, which
are very important to understand the pathology, can not be discovered using
the traditional clustering algorithms. Hence it is very necessary to develop bi-
clustering models/algorithms to identify the local structures. Bi-clustering mod-
els/algorithms are different from the traditional clustering methodologies which
assign the samples into specific classes based on the genes’ expression levels
across ALL the samples, they try to cluster the rows (features) and the columns
(samples) of a matrix simultaneously.

In other words, the idea of bi-clustering is to characterize each sample by
a subset of genes and to define each gene in a similar way. As a consequence,
bi-clustering algorithms can select the groups of genes that show similar expres-
sion behaviors in a subset of samples that belong to some specific classes such
as some tumor types, thus identify the local structures of the microarray matrix
data [53, 54]. Binary Matrix Factorization (BMF) has been presented for solving
bi-clustering problem: the input binary gene-sample matrix X4 is decomposed
into two binary matrices F and G such that X ≈ FGT . The binary matrices
F and G can explicitly designate the cluster memberships for genes and sam-
ples. Hence BMF offers a framework for simultaneously clustering the genes and
samples.

An example is given here5 to demonstrate the biclustering capability of BMF.
Given the original data matrix

X =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 0
0 1 1 1 0 1 1 1
1 0 1 1 0 1 1 1
0 1 0 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

One can see two biclusters, one in the upper-right corner, and one in lower-left
corner. Our BMF model gives

4 [21] has discussed the details on how to discretize the microarray data into a binary
matrix

5 Another example is given in the appendix to illustrate the limitations of NMF for
discovering bi-clustering structures.

20

The two discovered biclusters are recovered in a clean way:

FGT =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 1 1 1 0 1 1 1
0 1 1 1 0 1 1 1
0 1 1 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

4.5 Financial Data Mining

Underlying Trends in Stock Market : In the stock market, it has been
observed that the stock price fluctuations does not behave independently of each
other but are mainly dominated by several underlying and unobserved factors.
Hence identification the underlying trends from the stock market data is an
interesting problem, which can be solved by NMF. Given an n×m nonnegative
matrix X , columns of which are the records of the stock prices during n time
points, NMF can be applied to find two nonnegative factors F and G such
that X ≈ FGT , where columns of F are the underlying components. Note that
identifying the common factors that drive the prices is somewhat similar to blind
source separation (BSS) in signal processing. Furthermore, G can be used to
identify the cluster labels of the stocks (see Sect. 4.2) and the most interesting
result is that the stocks of the same sector are not necessarily assigned into
the same cluster and vice versa, which is of potential use to guide diversified
portfolio, in other words, investors should diversify their money into not only
different sectors, but also different clusters. More details can be found in [55].

Discriminant Features Extraction in Financial Distress Data : Building
appropriate financial distress prediction model based on the extracted discrim-
inative features is more and more important under the background of financial
crisis. In [56] it has presented a new prediction model which is indeed a combina-
tion of K-means, NMF and Support Vector Machine (SVM). The basic idea is to
train a SVM classifier in the reduced dimensional space which is spanned by the
discriminative features extracted by NMF, the algorithm of which is initialized
by K-means. The details can be found in [56].

5 Relations with Other Relevant Models

Indeed, the last ten years have witnessed the boom of Nonnegative Matrix Fac-
torization in many fields including bioinformatics, images processing, text min-

21

ing, physics, multimedia, etc. But it is still not very clear that why the model
works. Researches on the relations between NMF and other unsupervised learn-
ing models such as K-means and Probabilistic Latent Semantic Indexing try to
give us a preliminary interpretation of this question. The basic results of this
part are: i) the model of soft K-means can be rewritten as symmetric-NMF
model. Hence K-means and NMF are equivalent, which justifies the ability of
NMF for data clustering. But this does not mean that K-means and NMF will
generate identical cluster results since they employ different algorithms; ii) Prob-
abilistic Latent Semantic Indexing (PLSI) and NMF optimize the same objective
function (K-L divergence), but PLSI has additional constraints. The algorithms
of the two models can generate equivalent solutions, but they are different in
essence.

5.1 Relations between NMF and K-means

In [17] it has been shown that the model of K-means can be written in a special
form of NMF with orthogonal constraints, in which the objective function is the
least squares error and the objective matrix W is the similarity matrix of the
original samples and symmetric. This result is important and interesting because
it gives a solid foundation for NMF used for data clustering.

K-means is one of the most famous and traditional methods for clustering
analysis. It aims to partition m samples into K−clusters. The motivation is
very intuitive: the samples that are close to each other should share the same
cluster indicators. Hence K-means algorithm alternatively gives the cluster index
of each sample by the nearest cluster center and gives the cluster center by the
centroid of its members. The major drawback of K-means is that it is very
sensitive to the initializations and prone to local minima. Mathematically, K-
means can be formulated as minimizing a sum of squares cost function: min JK =
K∑

k=1

∑

i∈Ck

∥xi − mk∥2, where xi, i = 1, 2, ⋅ ⋅ ⋅m are the data samples and X =

(x1, x2, ⋅ ⋅ ⋅ , xm) is the data matrix, mk =
∑

i∈Ck

xi/nk is the centroid of cluster

Ck with nk samples. This optimization problem can be equivalently solved by a
special type of nonnegative matrix factorization W = HHT , where W = XTX ,
with orthogonal constraint HTH = I, i.e., nonnegative matrix factorization is
equivalent to soft K-means (i.e., HTH = I is relaxed).

Theorem 4. min ∥W − HHT ∥2, where W = XTX, is equivalent to soft K-
means.

Proof. See Appendix.
The model equivalence of K-means and NMF has established the theoretical

foundation of NMF used for data clustering. Though NMF has been applied
for clustering successfully, there is still a lack of theoretical analysis until this
equivalent result is proved. But one should be noted that it does not mean that
NMF and K-means generate identical results. The algorithms that used to solve
NMF and K-means are quite different. NMF uses gradient descent method while

22

K-means uses coordinate descent method ([57]). A general conclusion is that
NMF almost always outperforms K-means. Maybe this is due to the flexibility
of NMF which has more parameters to be decided. In fact, K-means always
wants to find the ellipsoidal-shaped clusters while NMF does not. When the
data distribution is far from an ellipsoidal-shaped clustering, which is often the
case for real data, NMF may have advantages ([22]). In summary, though NMF
is equivalent to K-means, it often generates a different and better result.

Moreover, it has been proved that the solution of soft K-means can also be
given by Principal Component Analysis (PCA), which builts closer relationships
between PCA and NMF ([58]) . A systematic numerical comparison and analysis
of K-means, PCA and NMF is of interesting, but is beyond the scope of this
chapter.

5.2 Relations between NMF and PLSI

Probabilistic Latent Semantic Indexing (PLSI) is one of the state-of-the-art un-
supervised learning models in data mining, and has been widely used in many
applications such as text clustering, information retrieval and collaborative filter-
ing. In this section, relations between NMF and PLSI, including the differences
of their models and the differences of their algorithms will be given. In summary,
NMF and PLSI optimize the same objective function; but their algorithms are
different due to the additional constraints in PLSI.

Probabilistic Latent Semantic Indexing (PLSI, [59]) is a probabilistic model
stemmed from Latent Semantic Analysis (LSA, [60]). Compared to LSA, PLSI
has a more solid theoretical foundation in statistics and thus is a more principled
approach for analyzing text, discovering latent topics and information retrieval,
etc. ([59, 61, 62]). PLSI is a kind of topic model and, given a joint probabilistic
matrix X (i.e.,

∑

i,j Xij = 1.), aims to get three nonnegative matrices C, diag-

onal S and H such that CSHT is the approximation of X . The parameters in
PLSI model are trained by the Expectation Maximization (EM) algorithm which
iteratively increases the objective likelihood function until some convergence con-
dition is satisfied and, at each step, PLSI maintains the column normalization
property of C, S and H (

∑

iCik = 1,
∑

k Skk = 1,
∑

j Hjk = 1).

For simplifying explanation, we take the document analysis task as an exam-
ple. Given a document collection Xn×m of m documents and a vocabulary of n
words, where each element Xij indicates whether a word wi occurs in document
dj , the learning task in PLSI is to find three matrices C,H and S, such that
X is approximated by CSHT , where Cik is the probability of P (wi∣zk)6, Hjk

is the probability of P (dj ∣zk) and S is diagonal matrix with diagonal element
Skk = P (zk).

To learn the PLSI model, we can consider maximizing the log-likelihood of the
PLSI model L =

∑

i,j n(i, j)logP (wi, dj), where n(i, j) is the co-occurrence num-
ber of word i and document j, and P (wi, dj) =

∑

k P (wi∣zk)P (zk)P (dj ∣zk) =

6 zk means the kth latent topic.

23

∑

k CikSkkHjk. Here we normalize X to satisfy
∑

i,j Xij = 1, and the log-
likelihood function can then be rewritten as:

L =
∑

i,j

Xij logP (wi, dj). (7)

The parametersC, S andH are then iteratively got by Expectation-Maximization
(EM) algorithm. The EM algorithm begins with some initial values of C, H , S
and iteratively updates them according to the following formulas:

Cik :=

∑

j

XijP
k
ij

∑

i,j

XijP k
ij

; Skk :=
∑

i,j

XijP
k
ij ; Hjk :=

∑

i

XijP
k
ij

∑

i,j

XijP k
ij

. (8)

where P k
ij is the probability of

P (zk∣wi, dj) =
SkkCikHjk

∑

k SkkCikHjk
. (9)

.
By combining (8) and (9), one can get:

Cik :=

∑

j

Xij
SkkCikHjk

∑

k

SkkCikHjk

∑

i,j

Xij
SkkCikHjk

∑

k

SkkCikHjk

= Cik

(X.
CSHT)H)ik

(CT X.
CSHT H)kk

;

Hjk :=

∑

i

Xij
SkkCikHjk

∑

k

SkkCikHjk

∑

i,j

Xij
SkkCikHjk

∑

k

SkkCikHjk

= Hjk

(X.
CSHT)

TC)jk

(CT X.
CSHT H)kk

;

Skk := Skk

∑

ij

XijCikHjk

∑

k

SkkCikHjk

= Skk(C
T X.

CSHT
H)kk.

(10)

The algorithm of PLSI is summarized in Algorithm 6:
Consequently, we will review the relations between NMF and PLSI. The ba-

sic conclusions are: 1) maximizing the objective likelihood function in PLSI is
equivalent to minimizing the K-L divergence in NMF. Hence NMF and PLSI
optimize the same objective function, i.e., K-L divergence ([18]); 2) their solu-
tions are equivalent because of the fixed row sum and fixed column sum property
of NMF with K-L divergence; 3) Their algorithms are different because of the
additional constraints in PLSI.

To begin with, we give the following lemma:

Lemma 1 (fixed row and column sums property, [18, 63]). In NMF,
under the update rules:

Fik :=
Fik

∑

j Gjk

∑

j

Xij

(FGT)ij
Gjk;

Gjk :=
Gjk

∑

i Fik

∑

i

Xij

(FGT)ij
Fik,

24

Algorithm 6 Probabilistic Latent Semantic Indexing

Input: C0, S0,H0, t = 1.
Output: C,S,H.
1: while 1 do

2: Update C
(t)
ik := C

(t−1)
ik

(
X.

C(t−1)S(t−1)H(t−1)T
)H(t−1))ik

(C(t−1)T
X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk

;

3: Update S
(t)
kk := S

(t−1)
kk (C(t)T X.

C(t)S(t−1)H(t−1)T
H(t−1))kk;

4: Update H
(t)
jk := H

(t−1)
jk

(
X.

C(t)S(t)H(t−1)T
)TC(t))jk

(C(t−1)T X.

C(t)S(t)H(t−1)T
H(t−1))kk

;

5: Test for convergence.
6: if Some convergence condition is satisfied then

7: C = C(t);
8: S = S(t);
9: H = H(t);
10: Break

11: end if

12: t = t+ 1;
13: end while

we have, at convergence:

n∑

i=1

(FGT)ij =

n∑

i=1

Xij ;

m∑

j=1

(FGT)ij =

m∑

j=1

Xij .

Proof. See Appendix.

Now we proceed to prove the model equivalence between NMF and PLSI.

Theorem 5. NMF and PLSI optimize the same objective function.

Proof. See Appendix.

Theorem 6. ([18, 19]) Any local maximum likelihood solution (C, S,H) of PLSI
is a solution of NMF with K-L divergence and vice versa.

Proof. This is obviously true by letting F = C and G = HS (or F = CS and
G = H) at convergence.

The conclusion that any local minimum solution (F,G) of NMF is a solution
of PLSI can be proved similarly by normalizing F and G at convergence. □

From above analysis, one can see that NMF and PLSI optimize the same objec-
tive function, and the solution (F,G) of NMF and the solution (C, S,H) of PLSI
are equivalent. Furthermore, we observe that at convergence, FGT = CSHT .

25

Consequently we will show that the algorithms of NMF and PLSI are dif-
ferent. To show this, we will firstly study the normalization of NMF. In other
words, to compare the differences between NMF and PLSI more explicitly, we
column normalize F and G at each step in NMF.

Obviously, in Algorithm 2, it holds that F (t)G(t−1)T = (F (t)A)(G(t−1)B)T

for any two matrices A and B as long as ABT = I and F (t)A ⩾ 0, G(t−1)B ⩾ 0.
If we select special A and B such that A is diagonal with Akk =

∑

i Fik and
B = A−1, then (F (t)A) is column normalization of F (t). Similarly, we can get
the column normalization of G(t). Based on these observations, we can revise
the standard NMF algorithm as follows: after line 2 in Algorithm 2, we firstly
column normalize F (t), and then replace G(t−1) by (G(t−1)B)T , consequently
update G(t−1), then normalize G(t) and so on. Thus we get the normalization
version of NMF algorithm:

Consequently, we give a conclusion on normalization of NMF. This conclusion
can help us understand the algorithm differences between PLSI and NMF more
clearly.

Theorem 7. For NMF, at the t−th iteration, given the triple factors C(t−1),

diagonal matrix S(t−1) and H(t−1), which satisfy
∑

iC
(t−1)
ik = 1,

∑

k S
(t−1)
kk =

1 and
∑

j H
(t−1)
jk = 1, as initializations such that F (t−1) = C(t−1)S(t−1) and

G(t−1) = H(t−1) or F (t−1) = C(t−1) and G(t−1) = H(t−1)S(t−1), the result F (t)

can be equivalently formulated as

C
(t)
ik := C

(t−1)
ik

(X.
C(t−1)S(t−1)H(t−1)T H(t−1))ik

(C(t−1)T X.
C(t−1)S(t−1)H(t−1)T H(t−1))kk

, (11)

S
(t)
kk := S

(t−1)
kk (C(t−1)T X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk (12)

such that

F (t) = C(t)S(t). (13)

The proof is omitted due to space limitation.

From above theorem, we can see that C(t) is column normalization of F (t),
and the update rule of C is given. In corollary 1, we give an interesting property
of S(t).

Corollary 1. For NMF, at the t−th iteration,
∑

i

C
(t)
ik = 1 and

∑

k

S
(t)
kk = 1.

For G in NMF, we have similar result.

Corollary 2. For NMF, at the t−th iteration, given the triple factors C(t−1),

diagonal matrix S(t−1) and H(t−1), which satisfy
∑

iC
(t−1)
ik = 1,

∑

k S
(t−1)
kk =

1 and
∑

j H
(t−1)
jk = 1, as initializations such that F (t−1) = C(t−1)S(t−1) and

G(t−1) = H(t−1) or F (t−1) = C(t−1) and G(t−1) = H(t−1)S(t−1), the result G(t)

26

can be equivalently formulated as

H
(t)
jk := H

(t−1)
jk

((
X.

C(t−1)S(t−1)H(t−1)T
)TC(t−1))jk

(C(t−1)T X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk

,

S
(t)
kk := S

(t−1)
kk (C(t−1)T X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk

such that G(t) = H(t)S(t).

Based on the above discussions, we can revise Algorithm 2 to Algorithm 7.

Algorithm 7 Nonnegative Matrix Factorization∗

Input: C(0), S(0),H(0), t = 1.
Output: C,S,H.
1: while 1 do

2: Update C
(t)
ik := C

(t−1)
ik

(
X.

C(t−1)S(t−1)H(t−1)T
H(t−1))ik

(C(t−1)T X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk

;

3: Update S
(t)
kk := S

(t−1)
kk (C(t−1)T X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk;

4: Update H
(t)
jk := H

(t−1)
jk

((
X.

C(t)S(t)H(t−1)T
)TC(t))jk

(C(t)T X.

C(t)S(t)H(t−1)T
H(t−1))kk

;

5: Update S
(t)
kk := S

(t)
kk (C

(t)T X.

C(t)S(t)H(t−1)T
H(t−1))kk;

6: Test for convergence.
7: if Some convergence condition is satisfied then

8: C = C(t);
9: S = S(t);
10: H = H(t);
11: Break

12: end if

13: t = t+ 1;
14: end while

Note that the normalization version of NMF will converge to a different local
optimum from the standard NMF. But the revised version has a close relation
with the standard one: any local optimum of Algorithm 7 is also a solution of
Algorithm 2, and vice versa.

27

Theorem 8. Any local optimum of Algorithm 7 is a solution of Algorithm 2.

Proof. This is obviously true by joining line 2 and line 3, line 4 and line 5
in Algorithm 7.

After studying normalization of NMF carefully, we can now have a better insight
into the algorithm differences between PLSI and NMF.

The following conclusions give the relations of C (in PLSI) and F (in NMF),
H (in PLSI) and G (in NMF).

Theorem 9. For PLSI and NMF, at the t−th iteration, given the triple fac-
tors C(t−1), S(t−1) and H(t−1) as initializations of PLSI and F (t−1), G(t−1) as
initializations of NMF such that C(t−1)S(t−1) = F (t−1) and H(t−1) = G(t−1)

or C(t−1) = F (t−1) and H(t−1)S(t−1) = G(t−1) (i.e., C(t−1)S(t−1)H(t−1)T =
F (t−1)G(t−1)T), the update rules of C and F have the following relations: except
for additional normalization, the update rule of C is identical with that of F
in NMF, i.e., C(t) = F (t)D−1

F , where DF is diagonal matrix and the diagonal

element (DF)kk =
∑

i

F
(t)
ik .

Proof. The result is obviously true from (10), (11) , (12) and (13).

Corollary 3. For PLSI and NMF, at the t−th iteration, given the triple fac-
tors C(t−1), S(t−1) and H(t−1) as initializations of PLSI and F (t−1), G(t−1) as
initializations of NMF such that C(t−1)S(t−1) = F (t−1) and H(t−1) = G(t−1)

or C(t−1) = F (t−1) and H(t−1)S(t−1) = G(t−1) (i.e., C(t−1)S(t−1)H(t−1)T =
F (t−1)G(t−1)T), the update rules of H and G have the following relations: except
for additional normalization, the update rule of H is identical with that of G
in NMF, i.e., H(t) = G(t)D−1

G , where DG is diagonal matrix and the diagonal

element (DF)kk =
∑

j

G
(t)
jk .

Hence, NMF with normalization at each iteration has close relationship with
PLSI. But this does not mean that PLSI can be replaced by NMF by normalizing
F and G at each step, which can be observed from Algorithm 6 and Algorithm
7.

The key reason is that PLSI imposes normalization conditions on the factors
explicitly. In [18] it has been shown that PLSI and NMF optimize the same ob-
jective function, hence PLSI can be seen as NMF-based model with additional
normalization constraints (

∑

iCik = 1,
∑

j Hjk = 1,
∑

k Skk = 1). The deriva-
tion process of PLSI update rules of C and H can be separated into two steps.
Take the update rule of C while fixing S and H for example: firstly one gets the
un-normalized C by gradient descent (identical with NMF), and then normalizes
C to satisfy the constraint

∑

iCik = 1. The update rule of H is got in a similar
way. The update rule of S can be got even more simply, just by gradient descent,
and the normalization constraints will be satisfied automatically. In detail, at
the t−th iteration, firstly, the derivative of the cost function J(X,CSHT) with

28

respect to S while fixing C and H is:

∂

∂Skk
J = −

∑

ij

XijCiaHja
∑

k

SkkCikHjk
+
∑

ij

CiaHja

= −
∑

ij

XijCiaHja
∑

k

SkkCikHjk
+ 1.

Let the step size �kk = Skk, then the update rule of S is:

Skk = Skk + �kk(
∑

ij

XijCiaHja
∑

k

SkkCikHjk
− 1)

= Skk(C
T X

CSHT
H)kk.

Theorem 6 has shown that any local optimal solution of PLSI is also a so-
lution of NMF with K-L divergence, and vice versa, and Theorem 8 has shown
similar results between normalized NMF and standard NMF. These results mean
that given the same initializations, PLSI, NMF and normalized NMF will give
equivalent solutions. Furthermore, we observe that their solution values are al-
ways identical:

CSHT 7 = FGT 8 = F ∗G∗T 9. (14)

Indeed, this phenomenon is very common in NMF. Roughly speaking, the
standard NMF algorithm can be expressed like this: update F , then update

G and so on. Now we revise it to: update F, update F, ⋅ ⋅ ⋅ , update F
︸ ︷︷ ︸

m times

, then

update G, update G, ⋅ ⋅ ⋅ , update G
︸ ︷︷ ︸

n times

, and so on. Choosing different m and n, we

can get infinitely many solutions even if given the same initializations. But these
solutions are all having the same solution values.

Note that since PLSI has to update S at each iteration, it needs more running
time than NMF.

6 Conclusions and Future Works

This chapter presents an overview of the major directions for research on Non-
negative Matrix Factorization, including the models, objective functions and
algorithms, and the applications, as well as its relations with other models. We
highlights the following conclusions: 1) Compared with Principal Component
Analysis, NMF is more interpretable due to its nonnegative constraints; 2) NMF
is very flexible. There are several choices of objective functions and algorithms to

7 Results by PLSI
8 Results by NMF
9 Results by normalized NMF

29

accommodate a variety of applications; 3) NMF has linked K-means and PLSI,
the two state-of-the-art unsupervised learning models, under the same frame-
work; 4) NMF has a wide variety of applications and often has better numerical
performance when compared with the other models/algorithms.

Finally, we list several open problems that are related to this chapter:

– there is still lack of systematic comparisons of the concordances and differ-
ences among the sparse variants of NMF. Note that generally speaking, the
penalty that uses 1-norm should give more sparse results when compared
with 2-norm since 2-norm often gives values that are very small rather than
zeros, but 2-norm penalty is easier to calculate ([64, 5]);

– what are the relationships among the objective divergence functions, the
algorithms and the applications? There is still lack of systematic analysis;

– why (14) holds? In other words, since they converge to different local solu-
tions, why the solution values are always identical?

– how to tackle very large scale dataset in real applications? Distributed NMF([65])
seems an interesting direction.

Acknowledgement

The author is very appreciated the valuable comments of Dr. Jie Tang (Depart-
ment of Computer Science and Technology, Tsinghua University, P.R.China)
and Dr. Yong Wang (Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, P.R.China). This work is supported by the Foundation of
Academic Discipline Program at Central University of Finance and Economics,
P.R.China.

Appendix

Proof of Theorem 1:

First of all, rewrite F = (F:,1, F:,2, ⋅ ⋅ ⋅ , F:,r), G = (G:,1, G:,2, ⋅ ⋅ ⋅ , G:,r). Let

DF = diag(max(F:,1),max(F:,2), ⋅ ⋅ ⋅ ,max(F:,r)),
DG = diag(max(G:,1),max(G:,2), ⋅ ⋅ ⋅ ,max(G:,r)),

where max(∙) is the largest element of column ∙.
Note

DF = D
1/2
F D

1/2
F , DG = D

1/2
G D

1/2
G .

D−1
F = D

−1/2
F D

−1/2
F , D−1

G = D
−1/2
G D

−1/2
G .

We obtain
X = FGT = (FD−1

F)(DFDG)(GD−1
G)T

= (FD
−1/2
F D

1/2
G)(GD

−1/2
G D

1/2
F)T .

30

Construct D as D = D
−1/2
G D

1/2
F , then

F ∗ = FD
−1/2
F D

1/2
G , G∗ = GD

−1/2
G D

1/2
F .

Thus (4) is proved.

Furthermore,

(FD
−1/2
F D

1/2
G)ij = Fij ⋅

√

max(G:,j)

max(F:,j)

=
Fij

max(F:,j)
⋅
√

max(F:,j)max(G:,j).

Without loss of generality, assuming that

max(F:,j) = Ftj , max(G:,j) = Glj ,

then we have

max(F:,j) ⋅max(G:,j) ≤ Ft1G
T
1l + ⋅ ⋅ ⋅FtjG

T
jl + ⋅ ⋅ ⋅+ FtrG

T
rl

=
∑

k

FtkG
T
kl = Xtl ≤ M.

So 0 ≤ F ∗
ij ≤

√
M and 0 ≤ G∗

ij ≤
√
M .

If X is symmetric and F = GT ,

G∗
ij = Gij ⋅

√

max(G:,i)

max(G:,i)
= Gij ,

which implies G∗ = G. □

Proof of Theorem 4:

Firstly, JK can be rewritten as:

JK =
K∑

k=1

∑

i∈Ck

∥xi −mk∥2

= c2 −
K∑

k=1

1

nk

∑

i,j∈Ck

xT
i xj ,

where c2 =
∑

i ∥xi∥2. The clustering result can be represented by K nonnegative
indicator vectors:

H = (ℎ1, ℎ2, ⋅ ⋅ ⋅ , ℎK), ℎT
k ℎl = �kl =

{
1 k = l
0 k ∕= l

31

where ℎk = (0, ⋅ ⋅ ⋅ , 0, 1, ⋅ ⋅ ⋅ , 1
︸ ︷︷ ︸

nk

, 0, ⋅ ⋅ ⋅ , 0)T /n1/2
k .

Now JK becomes: JK = Tr(XTX) − Tr(HTXTXH), where Tr(∙) is the
trace of matrix ∙. Thus min JK becomes

max
HT H=I,H⩾0

Tr(HTWH), (15)

where W = XTX .
But −2Tr(HTWH) = ∥W∥2 − 2Tr(HTWH) + ∥HTH∥2 = ∥W −HTH∥2,

hence,

H = arg min
HTH=I,H⩾0

−2Tr(HTWH)

= arg min
HTH=I,H⩾0

∥W −HTH∥2.

Relaxing the orthogonal constraint HTH = I completes the proof. □

Proof of Lemma 1:

At convergence, one has:

Gjk =
Gjk

∑

i Fik

∑

i

XijFik

(FGT)ij
.

Hence

∑

i′

(FGT)i′j =
∑

i′,k

Fi′kGjk

=
∑

i′,k

Fi′k
Gjk

∑

i Fik

∑

i

XijFik

(FGT)ij

=
∑

k

Gjk

∑

i

XijFik

(FGT)ij

=

m∑

i=1

Xij .

The other equality can be proven similarly. □

Proof of Theorem 5:

Firstly, we note that maximizing (7) can be rewritten as:

min−
m∑

i=1

n∑

j=1

Xij logP (wi, dj),

32

which is equivalent to

min

m∑

i=1

n∑

j=1

−Xij logP (wi, dj) +

m∑

i=1

n∑

j=1

(Xij logXij −Xij + (FGT)ij),

or

min
m∑

i=1

n∑

j=1

(Xij log
Xij

P (wi, dj)
−Xij + (FGT)ij),

since
∑m

i=1

∑n
j=1 Xij logXij is a constant and

m∑

i=1

n∑

j=1

(−Xij + (FGT)ij) cancels

out at convergence by Lemma 1. Hence, by Theorem 6, PLSI and NMF optimize
the same objective function. □

An Example to Illustrate the Limitations of NMF for Discovering
Bi-clustering Structures

In fact, several papers [14, 15] have discussed about the bi-clustering aspect of
NMF. But the key difficulty is that one can not identify the binary relationship of
genes and samples exactly since the resulting matrices F and G are not binary.
Here we give an example to illustrate the limitations of NMF for discovering
bi-clustering structures. Given the original data matrix

X =

⎛

⎜
⎜
⎜
⎜
⎝

0.8 0.8 0.8 0.64 0.64 0.64
0.76 0.76 0.76 0.68 0.68 1.68
0.64 0.64 0.64 0.80 0.80 0.80
0.68 0.68 0.68 0.76 0.76 0.76
0.64 0.64 0.64 0.80 0.80 0.80

⎞

⎟
⎟
⎟
⎟
⎠

.

Each row of X is a feature and each column of X is a sample.
We get the factor matrices F and G as follows:

F =

⎛

⎜
⎜
⎜
⎜
⎝

0.80 0.40
0.70 0.50
0.40 0.80
0.50 0.70
0.40 0.80

⎞

⎟
⎟
⎟
⎟
⎠

; GT =

(
0.8 0.8 0.8 0.4 0.4 0.4
0.4 0.4 0.4 0.8 0.8 0.8

)

.

One can easily observe the clustering structures of the columns from G, but when
identifying the bi-clustering structures, he(or she) has difficulties to identify an
appropriate threshold to select which features should be involved in bi-clustering
structures. From this small example we can see that standard NMF has limita-
tions to discover bi-clustering structures explicitly.

References

1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix
factorization. Nature 401(6755) (1999) 788–791

33

2. Lee, D.D., Seung, H.S..: Algorithms for non-negative matrix factorization. In:
Annual Conference on Neural Information Processing Systems. (2000) 556–562

3. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics 5(2)
(1994) 111–126

4. Jolliffe, I.T.: Principal Component Analysis. Second edn. Springer (2002)
5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics).
2nd ed. 2009. corr. 3rd printing edn. Springer (2009)

6. Tropp, J.A.: Literature survey: Non-negative matrix factorization. Unpublished
document, University of Texas at Austin, Austin, TX. (2003)

7. Xie, Y.L., Hopke, P., Paatero, P.: Positive matrix factorization applied to a curve
resolution problem. Journal of Chemometrics 12(6) (1999) 357–364

8. Li, S. Z., Hou, X. W., Zhang, H. J., Cheng, Q. S., Learning spatially localized,
parts-based representation. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR. 1 (2001) I-207-
I-212.

9. Cooper, M., Foote, J.: Summarizing video using non-negative similarity matrix
factorization. In: Multimedia Signal Processing, 2002 IEEE Workshop on. (2002)
25 – 28

10. Pauca, V.P., Shahnaz, F., Berry, M.W., Plemmons, R.J.: Text mining using non-
negative matrix factorizations. In: Proceedings of the Fourth SIAM International
Conference on Data Mining. (2004)

11. Shahnaz, F., Berry, M.W., Pauca, Plemmons, R.J.: Document clustering using
nonnegative matrix factorization. Information Processing & Management 42(2)
(2006) 373–386

12. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix
factorization. In: SIGIR ’03: Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval, New York,
NY, USA, ACM Press (2003) 267–273

13. Nielsen, F.A., Balslev, D., Hansen, L.K.: Mining the posterior cingulate: Segrega-
tion between memory and pain components. NeuroImage 27(3) (2005) 520–532

14. Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular
pattern discovery using matrix factorization. Proc Natl Acad Sci U S A 101(12)
(2004) 4164–4169

15. Pascual-Montano, A., Carazo, J.M., Kochi, K., Lehmann, D., Pascual-Marqui,
R.D.: Nonsmooth nonnegative matrix factorization (nsNMF). IEEE transactions
on Pattern Analysis and Machine Intelligence 28(3) (2006) 403–415

16. Devarajan, K.: Nonnegative matrix factorization: An analytical and interpretive
tool in computational biology. PLoS Comput Biol 4(7) (2008) e1000029

17. Ding, C., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factor-
ization and spectral clustering. In: SIAM Data Mining Conf. (2005)

18. Ding, C., Li, T., Peng, W.: On the equivalence between non-negative matrix
factorization and probabilistic latent semantic indexing. Comput. Stat. Data Anal.
52(8) (2008) 3913–3927

19. Gaussier, E., Goutte, C.: Relation between PLSA and NMF and implications. In:
SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, New York, NY, USA, ACM
(2005) 601–602

20. Zhang, Z.Y., Li, T., Ding, C., Zhang, X.S.: Binary matrix factorization with ap-
plications. Data Mining, IEEE International Conference on (2007) 391–400

34

21. Zhang, Z.Y., Li, T., Ding, C., Ren, X.W., Zhang, X.S.: Binary matrix factorization
for analyzing gene expression data. Data Min. Knowl. Discov. 20(1) (2010) 28–52

22. Ding, C.H.Q., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factor-
izations. IEEE Trans. Pattern Anal. Mach. Intell. 32(1) (2010) 45–55

23. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, New York, NY,
USA, ACM (2006) 126–135

24. Li, T., Ding, C.: The relationships among various nonnegative matrix factorization
methods for clustering. In: ICDM ’06: Proceedings of the Sixth International Con-
ference on Data Mining, Washington, DC, USA, IEEE Computer Society (2006)
362–371

25. Li, S.Z., Hou, X.W., Zhang, H.J., Cheng, Q.S.: Learning spatially localized, parts-
based representation. In: Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Conference on. Volume 1.
(2001)

26. Feng, T., Li, S., Shum, H.Y., Zhang, H.: Local non-negative matrix factorization as
a visual representation. In: Development and Learning, International Conference
on. (2002)

27. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Jour-
nal of Machine Learning Research 5 (2004) 1457-1469

28. Hoyer, P.O.: Non-negative sparse coding. In: Neural Networks for Signal Process-
ing, 2002. Proceedings of the 2002 12th IEEE Workshop on. (2002) 557–565

29. Liu, W., Zheng, N., Lu, X.: Non-negative matrix factorization for visual coding. In:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP’2003)

30. Gao, Y., Church, G.: Improving molecular cancer class discovery through sparse
non-negative matrix factorization. Bioinformatics 21(21) (2005) 3970–3975

31. Pauca, V.P., Piper, J., Plemmons, R.J.: Nonnegative matrix factorization for spec-
tral data analysis. Linear Algebra and its Applications 416(1) (2006) 29–47

32. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J.
Mach. Learn. Res. 5 (2004) 1457–1469

33. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics
23(12) (2007) 1495–1502

34. Mahoney, M.W., Drineas, P.: CUR matrix decompositions for improved data anal-
ysis. Proc Natl Acad Sci U S A 106(3) (2009) 697–702

35. Cichocki, A., Zdunek, R., Amari, S.: Csiszár’s divergences for non-negative ma-
trix factorization: Family of new algorithms. In Proc. Int’l Conf. Independent
Component Analysis and Blind Signal Separation. (2006) 32–39

36. Cichocki, A., Lee, H., Kim, Y.D., Choi, S.: Non-negative matrix factorization with
�-divergence. Pattern Recogn. Lett. 29(9) (2008) 1433–1440

37. Cichocki, A., Amari, S., Zdunek, R., Kompass, R., Hori, G., He, Z.: Extended smart
algorithms for non-negative matrix factorization. In: Artificial Intelligence and Soft
Computing - ICAISC 2006, 8th International Conference, Zakopane, Poland, June
25-29, 2006, Proceedings. (2006) 548–562

38. Liu, W., Yuan, K., Ye, D. On alpha-divergence based nonnegative matrix factor-
ization for clustering cancer gene expression data. Artif Intell Med. 44(1) (2008)
1-5

39. Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.: Nonnegative tensor
factorization using alpha and beta divergencies. In: Proc. IEEE International

35

Conference on Acoustics, Speech, and Signal Processing (ICASSP07). (2007) 1393–
1396

40. Dhillon, I.S., Sra, S.: Generalized nonnegative matrix approximations with breg-
man divergences. In: Proc. Advances in Neural Information Proc. Systems (NIPS).
(2005) 283–290

41. Kompass, R.: A generalized divergence measure for nonnegative matrix factoriza-
tion. Neural Comput. 19(3) (2007) 780–791

42. Cichocki, A., Zdunek, R., Phan, A.H., ichi Amari, S.: Nonnegative Matrix and
Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and
Blind Source Separation. A John Wiley and Sons, Ltd, Publication (2009)

43. Févotte, C., Bertin, N., Durrieu, J.L.: Nonnegative matrix factorization with the
itakura-saito divergence: With application to music analysis. Neural Comput.
21(3) (2009) 793–830

44. Gonzalez, E.F., Zhang, Y.: Accelerating the lee-seung algorithm for nonnegative
matrix factorization. Technical Report (2005)

45. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural
Comput. 19(10) (2007) 2756–2779

46. Kim, D., Sra, S., Dhillon, I.S.: Fast newton-type methods for the least squares
nonnegative matrix approximation problem. In: Data Mining, Proceedings of SIAM
Conference on. (2007) 343–354

47. Zdunek, R., Cichocki, A.: Non-negative matrix factorization with quasi-newton
optimization. In: Eighth International Conference on Artificial Intelligence and
Soft Computing, ICAISC, Springer (2006) 870–879

48. Kim, H., Park, H.: Nonnegative matrix factorization based on alternating nonneg-
ativity constrained least squares and active set method. SIAM J. Matrix Anal.
Appl. 30(2) (2008) 713–730

49. Long, B., Wu, X., Zhang, Z., Yu, P.S.: Community learning by graph approxima-
tion. In: Proceedings of the 2007 Seventh IEEE International Conference on Data
Mining, ICDM 2007 (2007): 232-241

50. Chen, Y., Rege, M., Dong, M., Hua, J.: Incorporating user provided constraints
into document clustering. In: Proceedings of the 2007 Seventh IEEE International
Conference on Data Mining, ICDM 2007 (2007) 103–112

51. Kulis, B., Basu, S., Dhillon, I., Mooney, R.: Semi-supervised graph clustering: a
kernel approach. In: ICML ’05: Proceedings of the 22nd international conference
on Machine learning, New York, NY, USA, ACM (2005) 457–464

52. Ji, X., Xu, W.: Document clustering with prior knowledge. In: SIGIR ’06: Pro-
ceedings of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, New York, NY, USA, ACM (2006) 405–412

53. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of
the Eighth International Conference on Intelligent Systems for Molecular Biology,
AAAI Press (2000) 93–103

54. Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W.,
Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of
biclustering methods for gene expression data. Bioinformatics 22(9) (2006) 1122–
1129

55. Drakakis, K., Rickard, S., de Frein, R., Cichocki, A.: Analysis of financial data
using non-negative matrix factorization. International Mathematical Forum 3(38)
(2008) 1853–1870

56. Ribeiro, B., Silva, C., Vieira, A., das Neves, J.C.: Extracting discriminative features
using non-negative matrix factorization in financial distress data. In: Proceedings of

36

the 9th International Conference on Adaptive and Natural Computing Algorithms,
ICANNGA 2009. (2009) 537–547

57. Zha, H., He, X., Ding, C., Simon, H.: Spectral relaxation for k-means clustering.
In: Proc. Advances in Neural Information Proc. Systems (NIPS). (2001) 1057–1064

58. Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceed-
ings of the twenty-first international conference on Machine learning (ICML04).
(2004) 225–232

59. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR ’99: Proceedings
of the 22nd annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, ACM Press (1999) 50–57

60. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by latent semantic analysis. Journal of the American Society of Informa-
tion Science 41(6) (1990) 391–407

61. Wu, X., Yan, J., Liu, N., Yan, S., Chen, Y., Chen, Z.: Probabilistic latent se-
mantic user segmentation for behavioral targeted advertising. In: ADKDD ’09:
Proceedings of the Third International Workshop on Data Mining and Audience
Intelligence for Advertising, New York, NY, USA, ACM (2009) 10–17

62. Cohn, D., Hofmann, T.: The missing link - a probabilistic model of document
content and hypertext connectivity. In: Proc. Advances in Neural Information
Proc. Systems (NIPS). (2001)

63. Ho, N.D., Dooren, P.V.: Non-negative matrix factorization with fixed row and
column sums. Linear Algebra and its Applications 429 (2008) 1020–1025

64. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B 58 (1996) 267–288

65. Liu, C., Yang, H.c., Fan, J., He, L.W., Wang, Y.M.: Distributed nonnegative matrix
factorization for web-scale dyadic data analysis on mapreduce. In: Proceedings of
the 19th international conference on World wide web (WWW10). (2010) 681–690

